VSB TECHNICAL ITATINNOVATIONS

Use Of Singu |a rity CO ntainers ||||| glglIOvSETRRsAIVTAY 22;_]'522AL SUPERCOMPUTING
on IT4l systems from

the perspective of normal user —
Jakub Vymola & Dominik Legut ﬁ

Containerize software compiled with any toolchain working everywhere. H
Don't lose any more time and performance. www.md-esg.eu

ABSTRACT

Containers are a great way to encapsulate software and environment for its reliable and quick deployment. They contain all the libraries and binaries needed to run specific software, however they share kernel with the host OS, which makes them
more lightweight and faster to run relative to virtual machines. They can be transferred and executed anywhere, as long as there is the container runtime installed on the target machine and it has compatible architecture. This means that the same
container can be seamlessly run on every type of node at IT4l, even on the accelerated ones, e.g. CUDA GPUs (as long as the installed software itself supports GPU acceleration). One can simply create the container with the compiled software either on
a personal machine or on any cluster, then transfer the container to any other cluster and expect it to work right away, without having to configure or install anything.

On IT4l HPC systems the container system of the choice is called Singularity. It works well on multi-user systems and was developed with HPC needs in mind. It is an open source project that began its development in 2015 and is supported by
thorough documentation [1].

We focus on the use of Singularity from the point of view of a normal user. It is shown how one can create containers, compile software into them and run them at various IT4l clusters, including accelerated systems, like GPU nodes on Barbora or
DGX-2.

The major obstruction of using containers is the absence of licensed software on local machine and root privileges on the clusters. Here, we demonstrate the optimized workflow and some tested tips and tricks to get around those problems. The
workflow includes the use of Sylabs cloud to create the containers, persistent overlay to compile additional software, as well as the use of modules tool, EasyBuild and mounted directories, to compile software using licensed tools, without ever having
to leave the cluster.

[1] https://sylabs.io/guides/3.6/user-guide

repository

LOCAL MACHINE
g Docker The image creation starts at your machine. That's because you have root permissions there.
image

Your actions will be the following:

\ l / - Create a definition file. [1]
o
ef
le
*1

./configure && make

mggitr - Also, write the script to install necessary and handy software.
W

] o VT install - In the file specify the source image. This is taken from your disk or a cloud repository.
b |

- You need to install Intel MKL and Intel MPI to run parallel software compiled with

Intel compilers. [2]

l - You can optionally install EasyBuild and Lmod. EasyBuild is for easy compilation.
Lmod is for easy work with toolchain and library modules on the cluster. It is also

required by EasyBuild.
el é}}’} InteliMKL . As a backup, you can install BLAS, LAPACK, etc.

- Do not mix different MPI versions in one container.
Intel compiler
libraries - Build the container image with sudo singularity build (*1) command.
- Use one of shell, exec or run commands to work with the container.

- For easy access, you can push this image to the Sylabs cloud with singularity push (*2).

You first need to singularity verify the image.

- You can now distribute the image across the clusters with scp or singularity pull (*3).

Remember, it's just a file.

- Alternative way to build container is to use Singularity remote builder at cluster.

SINGULARITY ON THE CLUSTER

relatlve SPEEd Notice that you haven't installed your target software yet. That is because we
with want to use a proprietary toolchain. *1

VASP However, the container image is now read-only, so you cannot compile it <tont
persisten

directly into it. You could use the sandbox image format. But there is a much -Sif overlay

1 node, 1 MPI proc , , file Wiitablelor
better way. It's called persistent overlay. Read-only read-only

NEYOYE d - Use mkfs.ext3 (*1) to make ext3 image - that's your overlay. - /
Singularity 1,02 - Use the container with -o <overlay-name> -B /apps:/apps (*2) flags to

both mount the overlay and gain access to all the modules in /apps. Container instance
with writable overlay

4 nodes, 4 MP| Procs Now Lmod makes it easy to load those modules.

e 1 - Get your source files into the container and compile them. eb, make ¢*3

(*3) or anything else that does not require sudo works. N
Singularity 0,988) persistent

- Now the overlay has software in it. You can shrink it to save 4 overlay

space. And you can distribute it to other machines. Just pay attention to s
* Each number is the average of 4 Container instance software

identical jobs ran on Salomon. incompatible processor architectures. with overlay Writable or read-only
Using PtN2 pyrite and fluorite 2x2x2 and software

supercell. Total of 96 atoms. - Run your container on computational nodes. To run with MPI simply

* Compiling VASP into overlay
separately on on each cluster.

Using xHost flag with fort yields [executable] (*4). Notice, that ideally you don't need to bind any /c culati /
aicuiation

type mpirun singularity {execfrun} -o <overlay-name> <container-name> *

the best performance. Such build

Is not transterable between external directories anymore.
incompatible processor architectures.

More information is written at a blog at http:/www.md-esg.eu/category/containers/ AC kn Q\/\/|edgemeﬂt

Refe re n Ces This work was supported by the European Regional Development Fund

[1] Singularity documentation at https://sylabs.io/docs. Learn how to create a container image and how to inte- In the IT4lnnovations national supercomputing center - path to exascale

ract with it, how to work with overlay and much more project, project number C2.02.1.01/-0.0/-0.0/-16_013/0001791 within

[2] Intel documentation at https:/software.intel.com. Guidelines on installing Intel performance libraries (Intel the Operational Programme Research, Development and Education and

MPI and Intel MKL). by the Czech Science Foundation grant No. 20-18392S..

